让 AI 开口「像人」:最难的不是智能,是「嗓音」
让 AI 开口「像人」:最难的不是智能,是「嗓音」Voice Agent 赛道正在爆发,但它迫切需要一个能让对话真正「流动起来」的底层引擎,一个能撑起下一代交互体验的 TTS 模型。竞争的焦点,已经从 LLM 的「大脑」,延伸到了 TTS 的「嗓音」。谁掌握嗓音,谁就掌握着下一代 AI 商业化的钥匙。而 10 月 30 日 MiniMax 发布的 Speech 2.6 模型,似乎正是一个专为解决这些痛点而来的答案。
Voice Agent 赛道正在爆发,但它迫切需要一个能让对话真正「流动起来」的底层引擎,一个能撑起下一代交互体验的 TTS 模型。竞争的焦点,已经从 LLM 的「大脑」,延伸到了 TTS 的「嗓音」。谁掌握嗓音,谁就掌握着下一代 AI 商业化的钥匙。而 10 月 30 日 MiniMax 发布的 Speech 2.6 模型,似乎正是一个专为解决这些痛点而来的答案。
在 AI 与自动化方面,Block 在 2025 年初推出了一个名为 “Goose” 的开源 AI Agent 框架。Goose 的设计初衷是:将大型语言模型输出与实际系统行为(如读取/写入文件、运行测试、自动化工作流)连接起来,从而不仅让模型能“聊”而且能“干活“。
华人大三学生,1100 万美元种子轮,硅谷学生创业目前融资最高产品。
当大语言模型突破了 “理解与生成” 的瓶颈,Agent 迅速成为 AI 落地的主流形态。从智能客服到自动化办公,几乎所有场景都需要 Agent 来承接 LLM 能力、执行具体任务。
来自人大和清华的研究团队发布了 DeepAnalyze,首个面向自主数据科学的 agentic LLM。DeepAnalyze引起了社区内广泛讨论,一周内收获1000多个GitHub星标、20w余次社交媒体浏览量。
Flint 的核心理念是将网站从静态资产转变为自主 agent。Michelle 在她的文章中直言不讳地说:"是时候终结传统网站了。我们正在从网站作为静态资产的世界,转向网站成为自主 agent 的世界。"这句话听起来可能有些激进,但当你了解 Flint 的工作原理后,就会明白她为什么如此自信。
就像 Windows 或 macOS 为软件提供运行环境,Flowith OS 为 AI Agent 提供思考与行动的环境。Flowith 正式发布了一个全新的产品:名为 Flowith OS 的新物种。它选择了一个「另辟蹊径」的路径,尝试为 AI Agent 打造一个全新的 AI-Native 式的操作系统。
直到我看到 Dedalus Labs 宣布完成 1100 万美元种子轮融资的消息,才意识到有人正在系统性地解决这个问题。这家由 Cathy Di 和 Windsor Nguyen 创立的公司,正在构建一个基础设施层,让开发者能够用 5 行代码就搭建起一个功能完整的 AI agent。这不是夸张的营销话术,而是他们真正在做的事情。
当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。
10 月 27 日,国产「好模型」阵营又迎来一位新成员,MiniMax 发布了全新大版本模型 M2,延续了 M1 时代的开源策略。它不仅在 Coding 与 Agent 能力等方面继承了 M1 的优势,更在成本效率、智能水平、响应延迟这 3项关键指标上,同时迈出了一大步。